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Bis(hydroxy)phosphine, the isomer of hypophosphorous
acid which remained elusive for a long time, coordinates to
the Ni site of heterometallic clusters with a W3NiQ4 core (Q
= S, Se) to give [W3(Ni(HP(OH)2))Q4(H2O)9]4+ (Q = S,
Se).

Hypophosphorous acid (systematic name phosphinic acid) has a
tetrahedral structure [H2P(O)(OH)] with two hydrogen atoms
attached directly to phosphorus.1a It acts therefore only as a
strong monobasic acid (pKa = 1.244), giving hypophosphites
[H2PO2]2.1b The anion acts as a ligand via its oxygen atoms,
while the phosphorus atom is devoid of donor properties,
lacking a lone pair.2 The acid can also be protonated via its
terminal oxygen to give [H2P(OH)2]+ (K ≈ 0.02).1c The
tautomeric form [HP(OH)2] (see eqn. 1) has never been isolated
or observed directly, though its presence in equilibrium with the
[H2P(O)(OH)] tautomer has been repeatedly postulated from
kinetics studies for a long time. It was estimated that the ratio
[HP(OH)2]/[H2P(O)(OH)] in the equilibrium in aqueous solu-
tions does not exceed 10212.3,4 The three-coordinate [HP(OH)2]
intermediate was also postulated in the reaction of NaH2PO2
with ROH (R = Me, Bu) in the presence of Pd catalyst, which
leads to monoalkylphosphites HP(O)(OR)(OH) and H2 as the
products.5 The cross-coupling of hypophosphites with ArX (X
= Cl, Br, I) in the presence of Pd(PPh3)4 gives mono-
arylphosphinic acids ArP(H)(O)(OH). It is believed that the
acids are formed from the [Ar–Pd–P(H)(OH)2]+ intermediate as
the result of reductive elimination.6

(1)

Recently we have shown that the elusive tautomer of
phosphorous acid, the [P(OH)3] molecule, can be trapped and
stabilized via coordination to the unique Pd site of the
[Mo3(PdCl)S4(H2O)9]3+ cluster aqua ion.7 This is remarkable,
since the uncoordinated tris(hydroxy)phosphine tautomer
[P(OH)3] is thermodynamically unstable with respect to the
[HP(O)(OH)2] form; log K = 10.3(1.5) at 25 °C in aqueous
solution.8 In the present work we report the isomerization of
[H2P(O)(OH)] into [HP(OH)2], which takes place in the
presence of W3NiQ4

4+ (Q = S, Se) cuboidal clusters. By
reaction of a new cluster [W3(NiCl)Se4(H2O)9]3+ (1)9 with
H3PO2 in HCl, the bis(hydroxy)phosphine HP(OH)2 was
trapped by coordination at the Ni site and, after addition of
cucurbit[6]uril, the complex was isolated12 and structurally
characterized as a supramolecular adduct [W3(Ni(HP-
(OH)2))Se4(H2O)9]Cl4·C36H36N24O12·11H2O (2).13 The sulfur
analogue of 1 gives isomorphous crystals of [W3(Ni(HP-

(OH)2))S4(H2O)9]Cl4·C36H36N24O12·11H2O (3) under the same
conditions.14

The formation of the [W3(Ni(HP(OH)2))Q4(H2O)9]4+ com-
plexes (Q = S, Se) in solution is relatively slow, but
quantitative, and can be followed by UV-Vis spectroscopy.15

The products are rather stable and can be eluted from a Dowex
cation exchange column with 1–4 M HCl without any
decomposition. In the case of [W3(Ni(HP(OH)2))Se4(H2O)9]4+

the 31P NMR spectrum of the eluate in 2 M HCl shows the
expected doublet, which turns into a sharp singlet (129.0 ppm
from 85% H3PO4) when the P–H coupling is suppressed. The
observed value of 1JP–H is 392.8 Hz, which can be compared
with 180–225 Hz for three-coordinate NP–H systems16 as well
as with 575.9 Hz for [H2P(O)(OH)] and with 686.0 Hz for
[HP(O)(OH)2]1c The reactions with H3PO2 take about 1 h to
complete (at mM levels).

The crystallization of 2, 3 in high yields is achieved by adding
cucurbit[6]uril to the reaction mixture. This macrocyclic
cavitand forms stable adducts with [M3Q4(H2O)9]4+ (M = Mo,
W; Q = S, Se) incomplete cube clusters, and with their
heterometal cuboidal derivatives, such as [Mo3(NiCl)-
S4(H2O)6Cl3]+.17,18 The driving force is the formation of twelve
complementary hydrogen bonds between the CNO groups of
cucurbituril and water molecules coordinated to the cluster.
Each W atom in 2 is coordinated by three water molecules (Fig.
1). Coordinated water molecules form complementary hydro-
gen bonds with the portal oxygen atoms of cucurbituril, with
O…O distances in the range 2.610–2.845 Å, although the
hydrogen atoms could not be unambiguously located by
crystallography. The ligand [HP(OH)2] is bound to Ni via the
phosphorus atom (Ni–P 2.128(4) Å). This bond is rather short.
In the cluster [Fe3(NiPPh3)S4(SEt)3] the Ni–P bond is 2.18 Å,19

† Dedicated to Professor Achim Müller on the occasion of his 65th
birthday.

Fig. 1 The structure of the cation in 2. Selected bond lengths (Å): W–Se
2.4732(11)–2.4851(11), W–O 2.151(7)–2.308(8), Ni–Se
2.3053(17)–2.3089(18), Ni–P 2.128(4), P–O 1.585(11) and 1.622(12).
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and in [Ni4(m-CO)6(P(CH2CH2CN)3)4] it is 2.16 Å.20 The P–O
distances in 2 are 1.585(11) and 1.622(12) Å. In [Mo3(Pd-
(P(OH)3))S4Cl3(H2O)6]+ a shorter P–O bond distance of 1.561
Å is found. The P–H hydrogen atom in 2 could be located only
tentatively in a difference Fourier synthesis. Our formulation is,
however, strongly supported by the 31P NMR data in solution
(purified by column chromatography), which clearly show the
presence of a species with only one direct P–H bond. No other
signals were observed. The angles O–P–Ni are 116.2(5) and
116.4(5)°, and O–P–O is 105.2(7)°, which in sum give 337.8°,
much less than 360° for trigonal planar P, but only 9° more than
the sum of three tetrahedral angles. The refined position of the
H atom bonded to P, although it has large uncertainties, is
consistent with a pyramidal phosphorus atom.

The behaviour of Ni in the clusters W3NiQ4 (Q = S, Se)
indicates a high degree of softness. The ability to induce the
isomerization of [H2P(O)(OH)] shows that the formation of one
short and strong Ni–P bond compensates the unfavourable
energetic changes in the rearrangement of [H2P(O)(OH)] into
[HP(OH)2]. It was also reported that [W3NiS4(H2O)10]4+ binds
C2H4 and CO at the Ni site.11,21 This is the more important, as
the only other available Ni aqua species, the aqua ion
[Ni(H2O)6]2+, behaves totally differently in this respect. Ni(II)
hypophosphite exists as NiCl(H2PO2)·H2O, where tetrahedral
H2PO2

2 bridges two [NiO3Cl2(H2O)] units through its oxygen
atoms.22 This unusual reactivity at the Ni site deserves to be
further explored end exploited for the design of structural and
functional models for bioclusters and transition metal sulfide-
based hydroprocessing catalysts. Indeed, the Mo/Ni cluster
[Mo3NiS4(H2O)10]4+, incorporated into zeolites, gives efficient
catalysts for benzothiophene hydrodesulfurization,23 as well as
highly selective catalysts for the formation of C2 species from
CO and H2.24 Ni is also essential in several bacterial enzymes,
and Ni sites there are often the place of highly unusual reactions
(from the point of view of ‘normal’ Ni (II) chemistry). The
enzyme CO dehydrogenase is believed to contain a cubane
cluster core Fe3NiS4.25
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